Some analysis of sVote,
the Swiss Post/Scytl Internet Voting Protocol
and some of the implications for New South
Wales, Australia

Vanessa Teague, University of Melbourne
Joint work wih Olivier Pereira and Sarah Jamie Lewis

MSR August '19

The Swiss Post/Scytl Internet Voting System

Main goals:
» Internet Voting
» Supported by voting cards delivered by Post to voters

Intended for use by up to 100% of population after public review and pen
test

Security requirements (=):
» Voting client trusted for privacy, not for integrity

» Server side operations verifiable, assuming at least one honest entity:
“complete verifiability”

» Actually the “printing service” is trusted for integrity. It also generates
the keys.

> Also the link between the votes that are received and the ones that
are mixed /counted is tenuous.

The Review Process

Swiss Chancellery Ordinance 161.116, Art. 7b:

. Anyone Is entitled to examine, modify, compile and execute
the source code for ideational purposes, and to write and
publish studies thereon. The owner of the source code may

permit its use for other purposes.

The Review Process

A twist in the Swiss Post “conditions of use”:

9. RESPONSIBLE DISCLOSURE

The Program follows a “responsible disclosure” policy. The
following rules apply cumulatively:

a) No Vulnerability shall be published without the
Researcher having followed previously the Reporting
Procedure set out in Clause 8 above;

b) No Vulnerability shall be published without the
Researcher having at least received the acknowledgment
from the Owners on the reported Vulnerability.

¢) No Vulnerability shall be published within a period of
forty five (45) days since the last communication
exchanged with the Owners with regards to such
potential Vulnerability, unless the Owners have agreed to
a shorter period or defined a longer period.

The Review Process

The code leaked:

https://gitlab.com/fickdiepost/

(Repository taken down after a few days. . .)

Taking a first look

At Financial Crypto'19:
» Would any IDE be able to open this code?

» Let's open these pdf documentation files?

Activities) Firefox Web Browser v Fri 08144 @ T B -

L‘) Sarah Jamie Lewis on Twitter: "So, | took a look at swiss online voting system code that someone leaked, and having written, deployed and audited large enterprise java code...that thing triggers every flag.” - Mozilla Firefox
signin

X @ sarahjamie lewis swiss, X W Sarah Jamie Lewison POl W Sarah Jamie Lewison Ty X) SarahJamielewisondy X +

— ¢ ® oD & twitter.com . . - oo @ 1 QL hjamie lewis swisspost code twith <> Mm O

£ Most Visited) Fedora Documentation [FedoraProject B Red Hat [5Free Content @ Signin 4 slack @ HowNotToProveElect... [NotesOnExptDesign.... 23 About myGov & Your Projects-Overle... B8 GreatCactusNextcloud [2019 Agenda

e 0 Sarah Jamie Lewis Follow
é So, | took a look at swiss online voting

system code that someone leaked, and
. having written, deployed and audited
large enterprise java code...that thing
triggers every flag.

s A) 17 Epl
y AAf ! i

)

s M Q20009 SO

.
IgX
1) Sarah Jamie Lewis @SaranJamelews Feb
R - : The core reencryption mixnet code Is spread across dozens of different files,
not Inciuded the auxifary/utiity/deployment packages.
X ég, Also this work In progress is reassuring

;rtext cipherte)

5 L« 18

Sarah Jamie Lewis @Sarandamielews Feb)
4 The code Jooks like It is doing the right things, but this is code that was not

written to be easily audited which Is concerning for such a security sensilive
system.

L N
LN
LN

(thi I's hard 1o write anternriee iava in an easilv audible wav bt 've <ean it

Taking a first look

At Financial Crypto'19:
» Would any IDE be able to open this code?

» Let's open these pdf documentation files?

Wait!? What is this procedure for Pedersen commitment key
generation????
Operation

e Generate a random exponent r € Z, between 1 and g-1 using the Random value generation

primitive.

e Exponentiate the generator g to the random exponent: H = g" mod p

Pedersen Commitments

Pedersen commitments in a group G:
» Take a public key pk made of random generators g, h

» Commity,(m) computed as ¢ = g"h™ for random r

» Perfectly hiding: g" completely hides m

» Computationally binding if DL of h in base g is unknown
If h=g* for a known x then:

AL —
B = gr1 R — gr1+xm1 = g(r1 FXmMy —Xxmp)+xmy __ gr1+xm1 Xmy pmy

So, x is a trapdoor that makes it possible to re-open a commitment
anyway | like

This is why Pedersen commitments are called:

Trapdoor Commitments

Taking a first look

Wait!? What is this procedure for Pedersen commitment key
generation???7?
Operation

 Generate a random exponent r € Z, between 1 and g-1 using the Random value generation

primitive.

o EXxponentiate the generator g to the random exponent: H = g" mod p

Why is Scytl actually generating the trapdoor???

» How do we know that no-one keeps track of r?

Standard/correct way of picking generators: g = .7 (1), h= 7 (2)
where .7 is a random oracle pointing to group generators

OP’s first reaction

This is not possible:

» They implemented this huge sophisticated system, they surely
understand what a Pedersen commitment is

» The system has been through several independent reviews

v

Several security proofs have been published

» This must be a bug in the doc, but the code certainly does something
different

OP’s first reaction

This is not possible:

» They implemented this huge sophisticated system, they surely
understand what a Pedersen commitment is

» The system has been through several independent reviews

v

Several security proofs have been published

» This must be a bug in the doc, but the code certainly does something
different

» VT's first reaction: I've met these people before. Let's look at the
code.

Activities IntelliJ IDEA Community Edition ¥
code [~/Documents/SwissVote/code] - ... fevoting-solution-master/source-codefonline-voting-mixing/mixing-commons/sr¢/main/fjavacom/scytl fov/mixing commons/proofs/bg fcommitments/CommitmentParams.java [code] - IntelliJ IDEA end

File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help

3
B
=

I
®

™
-

IgX
o
»
2

Fri0g:48 e

T OB~

{e-voting-mixing)-mixing-commons)-src)-main).java)-com)-scytl 1 A | Add Configuration... | » & © m | Q B
*g’ . O = l o — | A ParallelZeroProofGenerator.java A RandomOracleHash.java 4 CommitmentParams.java - .= ¥
S v Mgcode ~/Docum¢ 38 this.group = group; Y3
g > BE idea 23 EElSh = ch”ouplcl)ols).cgetRandomElement(group); @
- — | is.commitmentlength = n; a
B rzztmg sglut 41 S // Scytl's way of generating parameters
ok // this.g = GroupTools.getVectorRandomElement(group, this.commitm¢m
> Mdocument; 43 N // VT: Generate trapdoored parameters 5
v Il source-co¢ 44 this.trapdoors = ExponentTools.getVectorRandomExponent(n , group® o
b -maven-l 45 this.g = generateTrapdooredCommitmentParams();
> Monline-y 46 = } |
> Il online-y il ; : . . |
< s 48 G public CommitmentParams(final ZpSubgroup group, final ZpGroupElement |
E i '"e"‘\ 49 this.group = group;
3 v Monline-y 50 this.h = h;
7 v I mixir 51 this.g = g;
': v BMsr 52 this.commitmentlength = this.g.length;
o - 54
& 55 [+ public ZpGroupElement getH()| { |[return h;| }
S 58
o 59 E: public ZpGroupElement[] getG()| { |return g;| }
* | | CommitmentParams
i=6:TODO B Terminal QEvent Log
[47:1 LF + UTF-8+ 4spaces : & &

Testing an exploit

Let's build a basic exploit from this, code it, and see if it passes their
verifier

» A few hours to fully specify an exploit on the Bayer-Groth mixnet
Open a permutation commitment to a non-permutation

Use this to change as many votes as desired (provided we have their
randomness)

» 4 days to have it running

» =~ 20 lines of code modified
» Need to go through dozens of files to understand any tech detail

What do we communicate about this?

1. Summary

» Error gives a trapdoor in the system, breaking verifiability, a core
requirement by the Chancellery

» Exploit of the trapdoor is undetectable

» |s it on purpose? (good cover-up as a mistake) Just total
misunderstanding of basic crypto? Or total negligence?

What do we communicate about this?

1. Summary

» Error gives a trapdoor in the system, breaking verifiability, a core
requirement by the Chancellery

» Exploit of the trapdoor is undetectable

» |s it on purpose? (good cover-up as a mistake) Just total
misunderstanding of basic crypto? Or total negligence?

2. We wrote

Nothing in our analysis suggests that this problem was intro-
duced deliberately. It is entirely consistent with a naive implemen-
tation of a complex cryptographic protocol by well-intentioned
people who lacked a full understanding of its security assumptions
and other important details. Of course, if someone did want
to introduce an opportunity for manipulation, the best method
would be one that could be explained away as an accident if it
was found.

Swiss Post's Press release

What we learned:

» During the exploit review process at Swiss Post, the incorrect
generator selection problem had been pointed by an anonymous
researcher (Thomas Haines) and Rolf Haenni
We quickly acknowledged them in our report.

» Scytl knew about the problem:

f -)) U atac + \r It T <
e erre e source o Clalcs (4 ' | ! S apll LY | as
lantitied n 2017 lwaroviar the rarroact 2" WA/ Nt mardes 1n
alreaqy iaentitiea in Zul1/. Howeve [, LnNe correcuion was not madae in
v(-] | o 4 ;* vl , Yo iTH a1 a g(| A\ A ;\.; o 2 S 7 ;—\! - ‘» “~r *Thhao
11 | { cennoioqay pd Sl OCVLl, WIiiCT eSponsipie 10i {
(-u D - T - C t‘) —/' T . " "5
SOUrce code. > S FOS CUreLs IS andgd has asked SO O INaKe 1¢
! I 51 2 i 1 ar "o TI aale ~1$
(cCLIO | TU) neal € I eV nave aone. 1ne moaliiea
- ; ' . > 2 | e
5 L COUC | | { JDIIE 2 { 1€ [€d al cicast

Scytl's communication

Scytl responds to misinterpretations related to Swiss Post's media release

Corporate

misinterpreted, resulting in third parties stating that the vulnerability identified by the group of researchers had

already been acknowledged by Scytl in 2017 without being acted upon.

In 2017, Scytl’s team of researchers actually started implementing a verifiable random generator (FIPS 186
algorithms) to generate the commitment parameters of the Mixnet in a verifiable way, as required to achieve
universal verifiability. This can be checked in the source code published by Swiss Post:
“calculateGenerator_FIPS186_3_Verifiable” class located at cryptolib/cryptolib-elgamal/src/main/java/com/scytl

/cryptolib/elgamal/encrytionparams/EncryptionParameterGenerator.java.

However, an undetected gap in the specifications resulted in the Mixnet being implemented to use a standard
random generator instead of the FIPS 186 verifiable one. This is the gap identified by the researchers and,
therefore, it is by no means a "naive interpretation” of the cryptographic protocol. The Mixnet implementation has

been updated and the modified source code will be applied with the next reqular release.

Swiss Chancellery’s Press release

What we learned:
» Chancellery acknowledges that this issue should not have been there

Federal Chancellery to review certification procedure

The Federal Chancellery has called on Swiss Post to review and
improve its security processes to prevent such flaws. Swiss Post
should also review and adapt the conditions for accessing the
source code. The Federal Chancellery for its part will review
the relevant certification and authorization procedures.

Phew. Good thing they had some genuine independent
review before they used it

Phew. Good thing they had some genuine independent
review before they used it

N SUBSCRI

NSW Electoral Commission confirms
iVote contains critical Scytl crypto
defect

But declares it unaffected and safe for
upcoming state election.

NSW was already using it for early voting. Decryption March 23rd.

But doesn't NSW have a law mandating open public
access to the source code?

But doesn't NSW have a law mandating open public
access to the source code?

Electoral Act 2017 No 66

Current version for 1 December 2018 to date (accessed 8 May 2019 at 21:59)
Part 7 > Division 11 » Section 159 4 >

159 Secrecy relating to technology assisted voting

(1) Any person who becomes aware of how an eligible elector, voting in
accordance with the approved procedures, voted is not to disclose that
information to any other person except in accordance with the approved
procedures.

Maximum penalty: 20 penalty units or imprisonment for 6 months, or
both.

(2) A person must not disclose to any other person any source code or other
computer software that relates to technology assisted voting under the
approved procedures, except in accordance with the approved procedures
or in accordance with any arrangement entered into by the person with
the Electoral Commissioner.

Maximum penalty: 200 penalty units or imprisonment for 2 years, or
both.

Or an NDA that allows the public to learn about problems
in a reasonable time?

Or an NDA that allows the public to learn about problems
In a reasonable time?

For the avoidance of doubt, this Deed is not Confidential Information.

2. Term:

Confidential Information will be considered as confidential by the iVote Reviewer from
the time of its receipt by the iVote Reviewer until § years thereafter.

3. Review:

The iVote Reviewer shall conduct a review of the iVote for the Purpose (herein the
‘Review").

Scytl IVote reviewers Deed.docx
2/6

‘ Scytl

OK good. Now we've fixed the bug so everything is
perfectly secure, right?

OK good. Now we've fixed the bug so everything is
perfectly secure, right?

» Actually the shuffle proof is really a shuffle and decryption proof
» |Let's have a look at the decryption part

A decryption proof is a Chaum-Pedersen proof of equality
of discrete logs

Given generator g and public key pk = g~
To prove that (Cy, () is a valid EI Gamal encryption of 1
(i.e. that G =C3):

1. Pick a random a.
2. set Bp =g and B; = (.

3. Compute c = H(pk,C},Bo,B1), where H is a cryptographic hash
function.

4. Compute z = a+ cx.
The proof is (c,z).

Verification: check By = g%(pk) €, By = C{(C{)" ¢
and ¢ = H(pk, C{, By, B1).

A decryption proof is a Chaum-Pedersen proof of equality
of discrete logs

Given generator g and public key pk = g~
To prove that (Cy, () is a valid EI Gamal encryption of 1
(i.e. that G =C3):

1. Pick a random a.
2. set Bp =g and B; = (5.

3. Compute c = H(pk,C},Bo,B1), where H is a cryptographic hash
function.

4. Compute z = a+ cx.

The proof is (c,z).

Verification: check By = g%(pk)~ ¢, By = C§(C]) €

and ¢ = H(pk, C{, By, B1).

The problem is that Cy is not hashed—it can be made up afterwards.

A decryption proof is a Chaum-Pedersen proof of equality

of discrete logs
If only someone had already written a paper explaining how bad this is.

How not to Prove Yourself:
Pitfalls of the Fiat-Shamir Heuristic and
Applications to Helios

. - . . .) » . .
David Bernhard!, Olivier Pereira®, and Bogdan Warinschi’

! University of Bristol

Université Catholique de Louvain

Abstract. The Fiat-Shamir transformation is the most efficient con-
struction of non-interactive zero-knowledge proofs.

This paper is concerned with two variants of the transformation that ap-
pear but have not been clearly delineated in existing literature. Both vari-
ants start with the prover making a commitment. The strong variant then
hashes both the commitment and the statement to be proved, whereas
the weak variant hashes only the commitment. This minor change yields
dramatically different security guarantees: in situations where malicious
provers can select their statements adaptively, the weak Fiat-Shamir
transformation yields unsound /unextractable proofs. Yet such settings

Implications

» A cheating mixer/decrypter can turn a valid vote into nonsense while
providing a perfectly verifying (but false) proof that it decrypted
properly

» |t took us a few days to do the maths and a few more to code the
exploit and check that it passed verification

» Informally, it would be obvious something had gone wrong

Never yet used in Switzerland, but used this year in NSW?

NSW Electoral Commission
iVote and Swiss Post
e-voting update

In its media release dated 12 March 2019, the NSW Electoral Commission advised it
was aware of an issue relating to its iVote internet and telephone voting system. This
issue was raised in the context of the e-voting system operated by Swiss Post. A
patch addressing that issue has been installed by the NSW Electoral Commission.

The academics who raised that earlier issue have advised they believe they have
identified a further issue with the Swiss Post system.

Based on its assessment of the information supplied by these academics, the NSW
Electoral Commission is confident that the new issue they describe in the Swiss Post
system is not relevant to the iVote system.

These proofs are used for cast-as-intended verification too

» A cheating voting client can submit a nonsense vote, but the voter
receives the right return codes

Cast-as-intended verification

The voting client submits two items of data:

1. An encrypted vote
Ei=(g",M:2qvi«EL")

=

where EL is the election public key and vq,...,p, are small primes.
2. For each choice v; (i=1,...,y), it computes a partial choice code
pCC; = vy,

It encrypts each pCC; with a separate element of the multi-element
key PK, as

Ex=(g" ,pCCy- (PKMY . pCC,-(PKP@),pCC,.- (PKIM)).

The partial choice codes are used to compute the return codes. Need to
prove they're consistent with the vote, i.e. that

{pCCHy = {vi s

consistent with public key K = g*.

Proving vote consistency

Remember we have an encrypted vote E; = (g",l17",v;- EL") and
encrypted partial choice codes

E,=(g", vk (PKOY' vk (PK@) .. vk.
To prove consistency:

1. ms: a Schnorr proof of knowledge of r used in E;.
2. It computes F; as Ef, that is,

Fi= (g™, (N7yv;- EL")").

3. Te.: a proof of exponentiation, /.e.

(K, Fy) = (g*, EF) for a secret k & public K

4. |t multiplies all but the first element of E> together to form a
standard El Gamal encryption.

E,=(g" N PK(i)" v).

5. m,: a plaintext equality proof that

F, and E, encrypt the same value (that is, l'l,-";lvik),

w.r.t. EL in the first case and w.r.t. M1 PK(i) in the second case.

So the client-side ZKPs are simply insufficient

» A cheating client can make all but one of the choice codes right, then
fudge the last one to make the product work out.

» e.g. cheat on the codes for President & Senator, hope the voter
doesn’'t check the code for dog catcher.

Consequences in Switzerland

» This flaw affects systems that have already been used in Switzerland

» SwissPost decided not to offer their e-voting system in the May
elections

» They now say they will fix the bugs and continue development of
their universally-verifiable system.

Consequences in NSW?

» NSW doesn't use the Swiss code-return system
» \/oters use a closed-source Scytl app to vote...

» and a different closed-source Scytl app to verify

Conclusion

This code should not be trusted.
This can only just be the tip of the iceberg:

» We need more theory to analyze this kind of system
» \We need more reviews, as an ongoing process

Not weeks, but years of it.

TLS 1.3: 4.3 years between 1st and final draft.

The SwissPost/Scytl code had been under non-public assessment for years,
but within a few weeks of going public was shown to have serious
unnoticed errors.

Conclusions

| agree with Aleks.
The greatest risk to democracy is people’s inclination to trust without
feeling the need to verify.

